1.洛伦兹力的定义
磁场对运动电荷的作用力
2.洛伦兹力的大小
(1)v∥B时,F=0;
(2)v⊥B时,F=qvB;
(3)v与B的夹角为θ时,F=qvBsin θ.
3.洛伦兹力的方向
(1)判定方法:应用左手定则,注意四指应指向正电荷运动的方向或负电荷运动的反方向;
(2)方向特点:F⊥B,F⊥v,即F垂直于B、v决定的平面.(注意B和v可以有任意夹角)
1.临界条件
带电粒子刚好穿出(不穿出)磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切,故边界(边界的切线)与轨迹过切点的半径(直径)垂直.
2.解题步骤
分析情景→作基础图→作动态图→确定临界轨迹→分析临界状态→构建三角形→解三角形
3.常见的几种临界情况
(1)直线边界
最长时间:弧长最长,一般为轨迹与直线边界相切.
最短时间:弧长最短(弦长最短),入射点确定,入射点和出射点连线与边界垂直.
如图1,P为入射点,M为出射点.
(2)圆形边界:公共弦为小圆直径时,出现极值,即:
当运动轨迹圆半径大于圆形磁场半径时,以磁场直径的两端点为入射点和出射点的轨迹对应的圆心角最大.
模型一 “平移圆”模型
模型二 “旋转圆”模型
模型三 “放缩圆”模型
模型四 “磁聚焦”模型
1.带电粒子的会聚
如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R=r),则所有的带电粒子将从磁场圆的最低点B点射出.(会聚)
证明:四边形OAO′B为菱形,必是平行四边形,对边平行,OB必平行于AO′(即竖直方向),可知从A点发出的带电粒子必然经过B点.
2.带电粒子的发散
如图乙所示,有界圆形磁场的磁感应强度为B,圆心为O,从P点有大量质量为m、电荷量为q的正粒子,以大小相等的速度v沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)
证明:所有粒子运动轨迹的圆心与有界圆圆心O、入射点、出射点的连线为菱形,也是平行四边形,O1A(O2B、O3C)均平行于PO,即出射速度方向相同(即水平方向).